

Tetrahedron Letters 43 (2002) 1991-1994

TETRAHEDRON LETTERS

Stereocontrolled synthesis of enantiopure diversely functionalized prototypical piperidinone libraries, and constrained analogs of 4-substituted 2-amino adipic acid

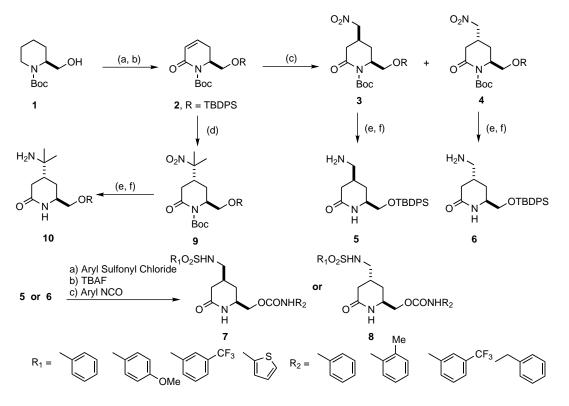
Stephen Hanessian,^{a,*} Mehran Seid^a and Ingemar Nilsson^{a,b,*}

^aDepartment of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, P.Q., Canada H3C 3J7 ^bAstraZeneca, Mölndal, Sweden

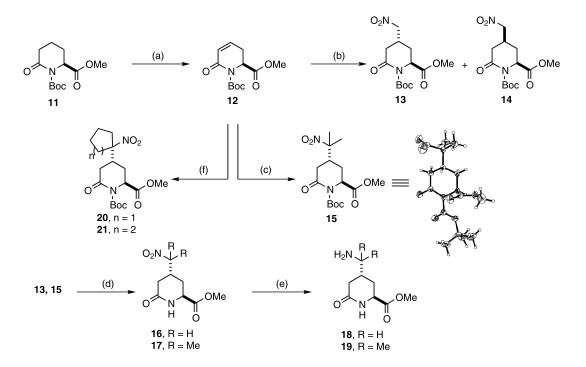
Received 17 December 2001; revised 21 January 2002; accepted 22 January 2002

Abstract—Enantiopure 2-substituted 4,5-unsaturated piperidinones were subjected to stereocontrolled nitroalkane additions and the corresponding products were further manipulated to produce 4-aminomethyl derivatives. Diverse substitution led to a set of 4-arylsulfonamides and *O*-carbamates as examples of prototypical piperidinone libraries with two sites of diversity. © 2002 Elsevier Science Ltd. All rights reserved.

Piperidine rings with one or more substituents are abundant in nature, and their stereocontrolled synthesis has been the subject of many reports.¹ Substituted piperidines are key structural elements in compounds possessing CNS activity inhibitors² and they are also known enzyme inhibitors.^{3,4} The availability of enantiopure 2,4-disubstituted piperidines and their 6-oxo derivatives, with the option to functionally differentiate the appendages would be very useful in the context of spacially defined scaffolds.⁵ For example, SB204070, an ester of hydroxymethyl *N*-butylpiperidine was identified as a potent and selective 5-HT₄ receptor antagonist⁶ originating from a library of 4hydroxymethyl piperidines.


Scheme 1 illustrates our synthesis of enantiopure 4aminomethyl 2-hydroxymethyl-6-oxo piperidines. Thus, 2-hydroxymethyl piperidine 1 readily available via enzymatic resolution⁷ or by chemical transformation from L-lysine⁸ was protected as the *N*-Boc/OTB-DPS derivative, then oxidized to the corresponding 6-oxo derivative. Formation of the α,β -unsaturated lactam **2** proceeded uneventfully in good overall yield.

Conjugate addition of nitromethane in the presence of DBU⁹ led to an equimolar mixture of the two diastereomers 3 and 4, which could be easily separated by flash chromatography. The stereochemical assignments were based on NOE measurements and by analogy to a related reaction (see below). Catalytic hydrogenation led to the corresponding 4aminomethyl analogs 5 and 6, respectively, which were individually subjected to a three-step sequence involving reaction with arylsulfonyl halides, removal of the TBDPS group, and formation of carbamates with a set of arylisocyanates. Thus, a set of mixed sulfonamide/carbamates corresponding to 7 and 8 and totaling 32 compounds was produced with excellent purities (13C, mass spec., HPLC). Addition of 2-nitropropane to 2 afforded a single adduct 9, which upon catalytic hydrogenation led to the 4-(2-aminopropyl) analog 10 (Scheme 1).

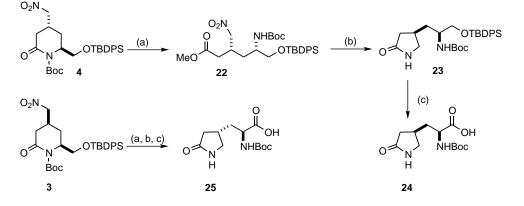

Treatment of the readily available α,β -unsaturated lactam 12¹⁰ with nitromethane in DBU gave a 3:1 mixture of the *syn* and *anti* 4-nitromethyl adducts 13 and 14, respectively, in excellent yield after chromatographic separation (Scheme 2). The structure of the 4-(2-nitropropyl) adduct 15 was ascertained by X-ray crystallography. Removal of the *N*-Boc protective group afforded the 4-nitroalkyl lactams 16 and 17 which were hydrogenated to the corresponding 4-

Keywords: sulfonamide; carbamate; piperidine; rigid analogs. * Corresponding authors.

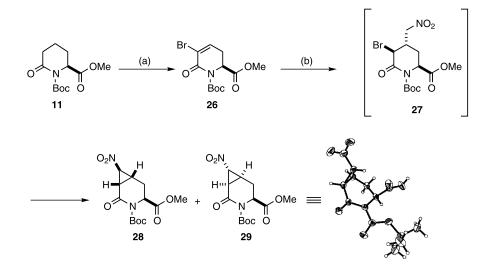
^{0040-4039/02/\$ -} see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00183-1

Scheme 1. (a) i. TBDPSCl, DMAP, CH_2Cl_2 , ii. $RuO_2 \times H_2O$, $NaIO_4$, H_2O -EtOAc, 80% (two steps); (b) i. LiHMDS, PhSeBr, THF, ii. H_2O_2 , pyridine, CH_2Cl_2 , 75% (two steps); (c) CH_3NO_2 , DBU, 85%, 1 to 1; (d) 2-nitropropane, DBU, 85%; (e) TFA, CH_2Cl_2 , 90%; (f) H_2 , Pd-C, MeOH 95%.

Scheme 2. (a) i. LiHMDS, PhSeBr, THF, ii. H_2O_2 , 75% (two steps); (b) CH_3NO_2 , DBU, 85%, 3 to 1(*anti* to syn); (c) 2-nitropropane, DBU, 85%; (d) TFA, CH_2Cl_2 , 90%; (e) H_2 , Pd–C, MeOH 95%; (f) nitrocyclohexyl or nitrocyclopentyl, K_2CO_3 , MeCN, 65%.


aminoalkyl 6-oxo-2-pipecolate esters **18** and **19**, respectively, in excellent yield. Finally, the Michael additions were also successfully realized with nitrocyclopentane and nitrocyclohexane to give **20** and **21**, respectively, as single isomers. In these cases, the reactions were run in acetonitrile in the presence of potassium carbonate (Scheme 2).

It is surprising that the stereochemical outcome in the reaction of 2 and 12 is different vis-à-vis nitromethane, but not the bulkier homologs. Based on steric factors alone, one would have predicted a lesser amount of the *syn*-isomer 3 compared to 4 (Scheme 1). $A^{1,3}$ strain¹¹ can play an important role in deciding the conformer population of 2-substituted lactams related 12, where a pseudoaxial orientation is favored by 5 kcal mol⁻¹ in a chair-like conformation.¹² With bulkier nitroalkanes 15, 20 and 21 are formed quasi exclusively. The X-ray crystal structure of 15 depicts the ester group in an axial orientation (Scheme 2).


When the 4-nitromethyl adduct 4 was subjected to hydrogenation, the rearranged pyrrolidinone 23 was obtained in $\sim 30\%$ yield (Scheme 3). Clearly, this

product resulted from an intramolecular attack of the initially formed amino group on the activated lactam carbonyl. A more efficient two-step process was developed whereby, the lactam was first converted to the ester **22**, which upon heating in toluene in the presence of a catalytic quantity of pyridine underwent intramolecular cyclization to **23** in 60% overall yield. Removal of the protective group and oxidation¹³ of the primary alcohol to the carboxylic acid gave a β -(3*R*-5-oxo-pyrrolidinyl) L-alanine analog **24**. An analogous sequence led to the 4-*S*-diastereomer **25**. These 3-substituted-5-oxo-pyrrolidines can be considered as constrained analogs of branched L-2-amino adipic acids.¹⁴

Finally, we prepared a versatile vinylic bromide analog **26** by a sequence of standard reactions, while ensuring the stereochemical integrity of the product. Treatment of **26** with nitromethane as solvent in the presence of DBU led to a 3:1 mixture of *syn* and *anti* 4,5-nitromethano 6-oxo-pipecolates **28** and **29**, respectively (Scheme 4).¹⁵ The minor isomer **29** afforded X-ray quality crystals in which the pseudo axial disposition of the ester group is noteworthy (Scheme 4). It is also of interest that the nitro group in both products **28** and **29**.

Scheme 3. (a) NaOMe, THF, 95%; (b) i. H₂, Pd–C, MeOH, ii. toluene, pyridine (cat.) 110°C, 60% (two steps); (c) i. TBAF, THF, ii. TEMPO, NaClO₂, NaOCl, MeCN, 35°C, 80%.

Scheme 4. (a) i. LiHMDS, PhSeBr, THF, ii. Br₂, iii. H₂O₂, 65%; (b) CH₃NO₂, DBU, 60%.

adopts an *exo*-orientation vis-à-vis the piperidinone ring.

In conclusion, we have described methodology for the stereocontrolled syntheses of 4-substituted 6-oxo-piperidine-2-carboxylic acids and the corresponding 2hydroxymethyl analogs.¹⁶ These were used as versatile scaffolds to construct a small library encompassing a 4×4 (or potentially larger) combination of sulfonamides and carbamates. The synthesis of β -(3R- and 3S-5-oxopyrrolidinyl L-alanine could be useful as examples of constrained L-2-amino adipic acids.

Acknowledgements

We thank NSERC of Canada and AstraZeneca (Mölndal, Sweden) for financial assistance through the Medicinal Chemistry Chair program. We acknowledge the services of Dr. Michel Simard in determining X-ray crystal structures. The authors also acknowledge collaboration with Dr Willem A. L. van Otterlo of the Université de Montréal.

References

- For selected reviews, see: (a) Laschat, S.; Dickner, T. Synthesis 2000, 1781; (b) Daly, J. W. In The Alkaloids; Cordell, G. A., Ed.; Academic: San Diego, 1998; Vol. 50, p. 141; (c) Schneider, M. J. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Oxford, 1996; Vol. 10, p. 155; (d) Wang, C.-L. J.; Wuonola, M. A. Org. Prep. Proc. Int. 1992, 24, 585; (e) Rubiralta, M.; Giralt, E.; Diez, A. Piperidines: Structure, Preparation Reactivity, and Synthetic Applications of Piperidines and its Derivatives; Elsevier: Amsterdam, 1991. For relevant recent articles, see: Wilkinson, T. J.; Stehle, N. W.; Beak, P. Org. Lett. 2000, 2, 155; Glasson, S. R.; Canet, J.-L.; Troin, Y. Tetrahedron Lett. 2000, 41, 9797; Keenan, T. P.; Yaeger, D.; Holt, D. A. Tetrahedron: Asymmetry 1999, 10, 4331.
- Vacher, B.; Bonnaud, B.; Funes, P.; Jubault, N.; Koek, W.; Assie, M.-B.; Cosi, C.; Kleven, M. J. Med. Chem. 1999, 42, 1648.
- See for example: Vieira, E.; Binggeli, A.; Breu, V.; Bur, D.; Fischli, W.; Güller, R.; Hirth, G.; Märki, H.-P.; Müller, M.; Oefner, C.; Scalone, M.; Stadler, H.; Wilhelm, M.; Wostl, W. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1397.
- For recent reviews, see: (a) Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305; (b) Babine, R. E.; Bender, S. L. Chem. Rev. 1997, 97, 1359.
- For selected reviews, see: (a) Gibson, S. E.; Guillo, N.; Tozer, M. J. *Tetrahedron* **1999**, *55*, 585; (b) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell W. D. *Tetrahedron*, **1997** *53*, 12789; (c) Gante, J. *Angew. Chem., Int. Ed.* **1994**, *33*, 1699; (d) Olson, G. L.; Bolin,

D. R.; Bonner, M. P.; Bos, M.; Cook, C. M.; Fry, D. C.; Graves, B. J.; Hatada, M.; Hill, D. E.; Kahn, M.; Madison, V. S.; Rusiecki, V. K. Sarabu, R.; Sepinwall, J.; Vincent, G. P.; Voss, M. E. J. Med. Chem. 1993, 36, 3041; (e) Rizo, J.; Giersach, L.-M. Annu. Rev. Biochem. 1992, 61, 387.

- Gaster, L. M.; Joiner, G. F.; King, F. D.; Wyman, P. A.; Sutton, J. M.; Bingham, S.; Ellis, E. S.; Sanger, G. J.; Wardle, K. A. J. Med. Chem. 1995, 38, 4760.
- 7. Sanchez-Sancho, F.; Herradon, B. Tetrahedron: Asymmetry 1998, 9, 1951.
- Davies, C. E.; Heightman, T. D.; Hermitage, S. A.; Moloney, M. G. Synth. Commun. 1996, 26, 687.
- See for example: Ono, N.; Kamimura, A.; Miyake, H.; Hamamoto, I.; Kaji, A. J. Org. Chem. 1985, 50, 3692.
- Muller, M.; Schoenfelder, A.; Didier, B.; Mann, A.; Wermuth, C.-G. J. Chem. Soc., Chem. Commun. 1999, 683.
- 11. Hoffmann, R. W. Chem. Rev. 1989, 89, 1841; see also following paper, Refs. 9–11.
- (a) Brown, J. D.; Foley, M. A.; Comins, D. L. J. Am. Chem. Soc. 1988, 110, 7445; (b) Beak, P.; Zajdel, W. J. J. Am. Chem. Soc. 1984, 106, 1010 and references cited therein.
- Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 1999, 64, 2564.
- 14. See for example: Murray, P. J.; Starkey, I. D. Tetrahedron Lett. 1996, 37, 1875.
- For a related reaction with 2-bromo-cyclopentenone, see: Arai, S.; Nakayama, K.; Ishida, T.; Shiori, T. *Tet-rahedron Lett.* 1999, 40, 4215.
- 16. Experimental procedures available upon request. Data for selected compounds: 16: $[\alpha]_{D}$ +20.0° (c 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.50 (b, 1H), 4.38-4.37 (d, J=7.01 Hz, 2H), 4.24-4.22 (m, 1H), 3.80 (s, 3H), 2.80-2.75 (m, 1H), 2.64-2.57 (m, 1H), 2.33-2.29 (d, J=13.58 Hz, 1H); ¹³C NMR (400 MHz, CDCl₃): δ (ppm) 171.07(0), 168.95(0), 78.43(-), 52.92(+), 34.18(-), 29.08(+), 27.53(-); HRMS: $C_8H_{12}N_2O_5$. Calcd: 216.0746; found: 217.0820 (m+1). 24: [α]_D -27.6° (c 1.2, CHCl₃); ¹H NMR (400 MHz, CD₃OD): δ (ppm) 4.23-4.26 (dd, J=15.0 Hz, 7.2 Hz, 1H), 3.52-3.46 (m, 1H), 3.12–3.08 (dd, J=6.17 Hz, 8.90 Hz, 1H), 2.57– 2.49 (m, 1H), 2.45-2.38 (dd, J=8.01 Hz, 15.37 Hz, 1H), 2.25–2.29 (m, 1H), 1.75–1.78 (m, 1H), 1.45 (m+s, 10H); ¹³C NMR (100 MHz, CD₃OD): δ (ppm) 177.06(0), 174.72(0), 157.57(0), 70.62(0), 55.86(+),43.17(-), 40.05(-), 37.04(-), 28.75(+), 23.14(+); HRMS: C₁₂H₂₀N₂O₅. Calcd: 272.1372; found: 273.13952 (m+1). **28**: [*α*]_D –22.3° (*c* 15, CHCl₃); ¹H NMR (400 MHz, CDCl₃); δ (ppm) 4.76–474 (dd, J=3.03 Hz, 1H), 4.44– 4.43 (t, J=2.89 Hz, 1H), 3.82 (s, 3H), 2.87-2.84 (dd, J=2.84 Hz, 9.98 Hz, 1H), 2.76–2.69 (m, 1H), 2.60–2.56 (m, 1H), 1.49 (s, 9H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 168.20(0), 161.57(0), 149.32(0), 82.29(0), 62.49(+), 54.62, 50.71(+), 26.27(+), 25.29(+), 22.86(-), 20.24(+);HRMS: C₁₃H₁₈N₂O₇. Calcd: 314.1114; found: 315.1185 (m+1).